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The development of the fault detection schemes for gearbox systems has received

considerable attention in recent years. Both time series modeling and feature extraction

based on wavelet methods have been considered, mostly under constant load. Constant

load assumption implies that changes in vibration data are caused only by deterioration

speed which affect the vibration signature of the system and in general make it difficult

to recognize the occurrence of an impending fault.

This paper presents a novel approach to detect and localize the gear failure

occurrence for a gearbox operating under varying load conditions. First, residual signal

is calculated using an autoregressive model with exogenous variables (ARX) fitted to the

time-synchronously averaged (TSA) vibration data and filtered TSA envelopes when the

gearbox operated under various load conditions in the healthy state. The gear of interest

is divided into several sections so that each section includes the same number of

adjacent teeth. Then, the fault detection and localization indicator is calculated by

applying F-test to the residual signal of the ARX model. The proposed fault detection

scheme indicates not only when the gear fault occurs, but also in which section of the

gear. Finally, the performance of the fault detection scheme is checked using full

lifetime vibration data obtained from the gearbox operating from a new condition to a

breakdown under varying load.

& 2010 Published by Elsevier Ltd.
1. Introduction

Gears are the most efficient and compact devices used to transmit torques and change the angular velocities. They are
widely applied in many machines, such as mining machines, automobiles, helicopters, and aircraft turbine engines.
Gearbox vibration data carries a lot of useful information and it has been very popular for condition monitoring and early
fault detection of gearboxes. The condition monitoring and fault detection schemes improve gear transmission systems
reliability and reduce their failure occurrence. The development of fault detection and diagnostic schemes for gear
transmission systems has been an active area of research in recent years, due to the need for many manufacturing
companies to reduce unplanned production capacity loss caused by gear transmission systems failure and to improve
equipment reliability through condition monitoring and failure prevention. Vibration data are mostly collected by
accelerometers mounted on the shell of a gearbox. However, the accelerometers collect not only gear vibration signals, but
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also the vibration signals associated with all transmission components (such as rotating shafts, bearings, and motor
rotation), which makes it very difficult to recognize the occurrence of an incipient fault.

In recent articles, advanced non-parametric approaches have been considered such as wavelets in Wang et al. [1] and
Wang and McFadden [2], short-time Fourier transform in Wang and McFadden [3], and multiresolution Fourier transform
in Kar and Mohanty [4] Some papers have applied parametric time-series models for gearbox fault detection, mostly
assuming constant load. In Kay [5], the author showed that time series models are appropriate for representing spectra
with sharp peaks (but not deep valleys) and are particularly useful for modeling sinusoidal data, which is the case of the
gear meshing signals. For example, in Wang and Wong [6], an autoregressive (AR) model was considered for gear fault
detection fitted to the vibration signal of the gear of interest in its healthy state. The model was used as a linear prediction
error filter to process the future state signal from the same gear. The gear state was assessed using the error signal obtained
as the difference between the filtered and unfiltered signals. Zhan and Makis [7] presented an adaptive Kalman filter-based
AR model with varying coefficients fitted to the gear motion residual signal in the healthy state of the gear of interest
considering several load conditions. The compromised model order was determined using several criteria. Liu and Makis
[8] proposed a gear failure diagnosis method based on vector autoregressive (VAR) modeling of the vibration signals,
dimensionality reduction applying dynamic principal component analysis and condition monitoring using a multivariate Q
control chart. Rofe [9] considered an autoregressive moving-average (ARMA) model as a prediction error filter to detect
gear fault accounting for load variation, and the variance and kurtosis of ARMA model residuals were used to indicate the
presence or absence of a fault. However, different models were fitted for different loads, i.e., each model was built under
the assumption that the load was a constant.

If the load is assumed to be a constant, the vibration signals caused by a fluctuating load are not interpreted correctly.
The fluctuating load condition dramatically affects the vibration signature of the system, so that the model developed
under the constant load assumption cannot recognize whether the vibration signature changes are caused by the load
variation or by a failure occurrence. It should be noted that most real production systems operate under varying load. The
previous AR, ARMA and VAR models which were fitted to vibration data did not consider load variation. The proper
approach would be to consider load as additional information in a time series model, so that an autoregressive model with
an exogenous input (ARX) or a multivariate vector ARX model would be the appropriate choice. To our knowledge, this
novel approach has not been considered in the vibration literature.

In this paper, an ARX model is proposed to consider varying load as the input, so that the model and the developed fault
detection scheme can be used in real situations. This paper is organized as follows. Section 2 briefly describes the
experimental gear rig and the data acquisition system used in this study. In Section 3, a time-synchronous averaging (TSA)
algorithm is applied to average out the contributions of both the noise and signals whose periods are not equal to the shaft
rotation period of the gear of interest in a gearbox. Filtered TSA envelopes are then extracted from the TSA vibration data
for each data file under varying load condition. In Section 4, using the TSA signals as output and the filtered TSA envelopes
as input variable, an ARX model is identified and fitted to the data. In Section 5, F-test applied to the ARX model residuals is
performed and the corresponding p-value is proposed as a quantitative indicator of fault advancement over a full lifetime
of a gearbox. The conclusions and future research are summarized in Section 6.

2. Experimental set-up and data collection

The vibration data used in this research have been obtained from the Applied Research Laboratory of the Pennsylvania
State University. The data were collected using the Mechanical Diagnostics Test Bed (as shown in Fig. 1), which was
designed to provide experimental vibration data for research on diagnostics of a commercial transmission. The gearbox
was driven at a set input speed using a 22.38 kW, 1750 rev/min drive motor, and the torque was applied by a 55.95 kW
absorption motor (MDTB [10]). A vector unit capable of controlling the current output of the absorption motor
accomplished the variation of the torque. The MDTB is highly efficient because the electrical power that is generated by the
absorber is fed back to the driver motor. The mechanical and electrical losses are sustained by a small fraction of wall
power. The MDTB has the capability of testing single and double reduction industrial gearboxes with ratios from about
Fig. 1. Mechanical diagnostic test rig.
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1.2:1 to 6:1. The gearboxes are nominally in the 3.675–14.7 kW range. The system is defined to provide the maximum
versatility to speed and torque settings.

The vibration data of test-run #14 is used in this paper. In this test, the gearbox contained a 70-tooth driven gear and a
21-tooth pinion gear. The nominal output of the gearbox was 62.66 N m. The vibration data were collected by
accelerometer A02 mounted on the shell of the gearbox as shown in Fig. 2.

Each data file obtained from accelerometer A02 includes 200,000 samples, which were collected in 10 s windows with
20 kHz sampling frequency and triggered by accelerometer rms thresholds. The resolution of analog-to-digital converter was
16-bit, which assured that the accuracy of the accelerometers was preserved. The motor velocity was acquired using the drive
motor speed vector feedback V01. The gearbox output load was acquired from the absorption motor torque vector feedback
V05. The sampling frequencies of V01 and V05 were 1 kHz. After the vibration data collection, V01 and V05 started collecting
load data. In each data file, there were 10,000 samples, which were collected during 10 s periods with 1 kHz sampling
frequency. Hence, the vibration data were not synchronized with the V01 and V05 data. The whole test took 116 h, and there
were 338 data files in total. The gearbox was run at 100% (62.66 N m) output torque for 96 h. Then, the gearbox was run under
varying load from file 194 to 338. The output load ramped up from 50% (31.33 N m) to 300% (187.98 N m) in 8 min, and then
ramped down back to 50% again in 8 min. Fig. 3 shows the mean value of the drive motor speed and gearbox output torque.
Fig. 2. Locations of accelerometers.

Fig. 3. (a) Gearbox output torque and (b) gearbox input speed.



Fig. 4. Broken teeth in test-run#14.
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The gearbox input speed fluctuated in the range less than 0.06%, so the speed can be consider as a constant. After 20 h,
the test-run #14 was shut down with five fully broken and two partially broken teeth on the driven gear which occurred as
shown in Fig. 4.

In this paper, we consider the data files obtained under varying load conditions, so the files from 194 to 338 were
analyzed except file 212 that was reported unreliable in MDTB [10] due to some accelerometer problems. All the data files
were separated into two groups. The files 194–246 were used to build the ARX model and the files 247–338 were used to
detect the gearbox failure.

We chose six data files to demonstrate our procedures. The file 283 was selected, since it was the first file showing that
the gear fault occurred. The results obtained for file 283 were compared with the result obtained for file 254, both of these
files were collected when the gearbox was ramped up to 300% output load. Also, we chose files 259 and 288 for a
comparison, since for both of them the output load was ramped down to 100%. When the gearbox runs at a low output load
condition, the detection of gear failure is much more difficult than when the gearbox runs at a high output load condition.
For the low load condition, we compared the results using the data files 261 and 290, both were collected at 50% output
torque. Based on the inspection performed after gearbox failure, the data files 254, 259, and 261 were collected when the
gearbox was in healthy state, and files 283, 288, and 290 were collected when the gearbox was in failure state.

3. Time-synchronous averaging algorithm and filtered envelope extraction

The filtered TSA envelope is composed of the information of load variation and gear shaft vibration due to shaft
imbalance. This envelope is considered as an input for the ARX model. A method how to extract the filtered TSA envelope
from the collected vibration data is presented in this section. First, the TSA signal is obtained and then the envelope
carrying load information is extracted from the TSA signal. Finally, a low pass filter is applied to remove the gear fault
signature from the TSA envelope.

Vibration data obtained from the gearbox represent a complex combination of information plus noise produced by the
background. Time-domain synchronous averaging algorithm (TSA) providing an average time signal of one individual gear
over a large number of cycles has been commonly used in the detection of gear faults (see e.g. [11,12,13]). TSA reduces the
contributions of both noise and signals whose periods are not equal to the given gear shaft rotation period by
synchronizing the sampling of the vibration signal with the shaft rotation of a particular gear and evaluating the ensemble
average over many revolutions with the start of each revolution at the same angular position. Suppose there are n data
points in each vibration data file collected from a gearbox operating under a constant speed. {VðkÞ}, k¼ 1,2,:::,n, is used to
denote this discrete time vibration data. Since the gearbox is running under a constant speed, the number of sampling
points which correspond to one complete revolution of the gear of interest is described as

K ¼
fs

fm=Nt

� �
(1)

where fs is the sampling frequency, fm is the fundamental meshing frequency of the gear of interest, Nt is the number of
teeth of the given gear, and �d eis the ceil function returning the closest higher integer. The number of cycles to be averaged
can be obtained from M0 ¼ N=K

� �
, where N is total number of sampling points in each data file and �b c is the floor function

returning the closest lower integer. In the time domain, the conventional TSA signal of {VðkÞ} is defined as

VTSA
ðkÞ ¼

1

M0

XM0�1

i ¼ 0

Vðkþ iKÞ, k¼ 1,2,:::,K (2)

In the next section, the TSA signal is going to be processed by an ARX model with an optimal model order b, s, and r,
which requires that the number of TSA signals is K+c, where c¼maxðr,bþsÞ, to obtain K residuals corresponding to a
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complete revolution of the gear of interest. Thus, the equation to calculate the TSA signal is modified as follows:

VTSA
ðkÞ ¼

1

M

XM�1

i ¼ 0

Vðkþ iKÞ, k¼ 1,2,:::,Kþc (3)

where

M¼ N=K
� �

� c=K
� �

The TSA signals contain not only gear fault signatures, but also gear meshing frequencies, gear shaft imbalance signals,
and load variation signatures. An ARX model is introduced to partially filter out the gear meshing frequencies, shaft
imbalance signals, and load variation signatures from the TSA signals using a filtered TSA envelope as an external input. We
will now present a method how to extract a filtered TSA envelope. First, we localize peaks of the meshing signal of each
gear. The upper envelope is made up of all the local maximum values. We filter out the peaks caused by the local gear fault,
and fit a piecewise linear function lu to the modified upper envelope. Using the same method, the other piecewise function
ld is fitted to the lower envelope using the local minimum value of each gear meshing signal. The estimated load signals

{l̂ðkÞ} for each data file are given as

l̂ðkÞ ¼
luðkÞ�ldðkÞ

2
(4)

When a local gear fault occurs, a peak may be found in the estimated load signals and this kind of peak can be
considered as an impulse component when compared with estimated load signals {l̂ðkÞ}. The filtered TSA envelope {xðkÞ} is
extracted from the estimated load signals {l̂ðkÞ} by averaging out the impact this impulse component caused by the local
gear fault may have. So, the filtered TSA envelope {xðkÞ} contain the information related to varying load and shaft
imbalance, and this information is not affected by local gear faults.

Then, we applied previously described TSA technique to the vibration data collected by accelerometer A02. Each data
file contained the data collected during 10 s. As shown in Fig. 5, the horizontal axis is the time and the vertical axis is the
amplitude of the acceleration.

Based on these figures, it is difficult to obtain any information of gear state, so we apply the TSA algorithm and extract
filtered TSA envelopes, which are shown in Fig. 6.
Fig. 5. Vibration data: (a) healthy state 300% output torque, (b) faulty state at 300% output torque, (c) healthy state at 100% output torque, (d) faulty state

at 100% output torque, (e) healthy state at 50% output torque, and (f) faulty state at 50% output torque.



Fig. 6. TSA signals (dotted line) and filtered TSA envelop (solid line): (a) healthy state at 300% output torque, (b) faulty state at 300% output torque;

(c) healthy state at 100% output torque, (d) faulty state at 100% output torque; (e) healthy state at 50% output torque, and (f) faulty state at 50% output

torque.
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4. ARX model using gear vibration data under varying load

In this study, an ARX model is utilized to detect and localize gear failure for a gearbox operating under varying load. The
residual signal of an ARX model represents the difference from the average tooth-meshing vibration in a healthy state and
usually shows evidence of faults earlier and more clearly than the TSA signal. Since the majority of energy in the healthy
state of the target gear is concentrated at the meshing fundamental and its harmonics, the ARX model residual signal will
be much less sensitive to the load variation and shaft imbalance than the TSA signal. In the next section, we present an
approach to identify the model order and to estimate parameters of an ARX model and show numerical results using real
data.
4.1. ARX model based on the modified TSA signal and filtered TSA envelope

The TSA signal VTSA allows signal frequencies, which are synchronous with the meshing frequency of interest, to be
isolated from all other signals. However, VTSA still contains a large numbers of components which are not related to the
gear fault signature, such as the gear meshing signal Vg , the load variation signature, and the gear shaft vibration signal
caused by shaft geometric asymmetry and assembly errors [9]. In gear fault detection and diagnosis, it is necessary to
isolate these signals from the TSA signal to obtain a residual signal that is more efficiently indicative of the gear fault.

For healthy gears, the gear meshing signal is modulated by some low shaft order (first and/or second order) functions.
The spectrum of the gear meshing signal is therefore dominated by the sharp spectral peaks at the fundamental gear
meshing frequency and its harmonics accompanied by some low-order modulation sidebands. The TSA signal of a gear
meshing signal can be expressed by the following equation [11]:

VgðkÞ ¼
1

H

XH

h ¼ 0

Ah 1þahðkÞ
� 	

cos 2pfhkþbhþhhðkÞ

 �

, k¼ 1,2,:::,Kþb (5)

where h¼ 0,1,:::,H is the meshing harmonic number, Ah is the amplitude at the hth harmonic frequency (i.e., fh ¼ h� fs),
{ahðkÞ} is the amplitude modulation function, bh is the initial phase, and {hhðkÞ} is the phase modulation function at the hth
harmonic.

Kay [5] proved that the AR model is appropriate to represent spectra of gear meshing signals with sharp peaks. For a
gearbox operating under constant load and speed, and the gear shaft imbalances ignored, Wang and Wong [6] successfully
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applied an AR model to represent gear meshing signal. The AR model is given by the following equation:

VgðkÞ ¼ dr Bð ÞVgðkÞþngðkÞ (6)

where

dr Bð Þ ¼ d1B� � � �drBr (7)

B denote the backshift operator and ng are the AR models residuals.
When the load variation and shaft imbalance are present, the filtered TSA envelope {xðkÞ} can be used to represent the

combination of the signature caused by varying load and shaft imbalance. Then, the TSA signal VTSA is described as an ARX
model with the filtered TSA envelope as an exogenous variable by the following equation:

VTSA
ðkÞ ¼ VgðkÞþwp Bð ÞxðkÞþnðkÞ (8)

where

wp Bð Þ ¼w0þw1Bþ � � � þwpBp (9)

and {nðkÞ} is an error term. More details about ARX model are introduced in Appendix A. Submitting Eq. (6) into Eq. (8), we
can represent the TSA signal as

VTSA
ðkÞ ¼ drðBÞVgðkÞþngðkÞþwpðBÞxðkÞþnðkÞ

¼ drðBÞVgðkÞþngðkÞþwpðBÞxðkÞþnðkÞþdrðBÞwpðBÞxðkÞþdrðBÞngðkÞ-drðBÞwpðBÞxðkÞ-drðBÞngðkÞ

¼ drðBÞ½VgðkÞþwpðBÞxðkÞþngðkÞ�þwpðBÞ½1�drðBÞ�xðkÞþ½1�drðBÞ�nðkÞþngðkÞ

¼ drðBÞV
TSA
ðkÞþwpðBÞ½1�drðBÞ�xðkÞþ½1�drðBÞ�nðkÞþngðkÞ (10)

In order to rewrite the above equation as an ARX model, letting xsðBÞB
b
¼wpðBÞ½1�drðBÞ� and NðkÞ ¼ ½1�drðBÞ�nðkÞþ

ngðkÞ, we have an ARX model described by the following equation:

VTSA
ðkÞ ¼ drðBÞV

TSA
ðkÞþxsðBÞB

bxðkÞþNðkÞ (11)

where {NðkÞ} is the noise term approximated by the ARX model residuals. For fault detection, only the information
embedded in residuals is of interest.

4.2. ARX model order identification and parameters estimation

In this section, we show how to identify an ARX model order and estimate the model parameters. The structure of an
ARX model is represented by the equation:

yðkÞ ¼ drðBÞyðkÞþxsðBÞB
bxðkÞþNðkÞ (12)

where

osðBÞ ¼o0þo1Bþ � � � þosB
s (13)

drðBÞ ¼ d1Bþ � � � þdrB
r (14)

y is the TSA vibration signal {VTSA
ðkÞ}, x is the ARX model exogenous input representing the filtered TSA envelop, and {NðkÞ}

is assumed as a Gaussian white noise with zero mean and variance s2
N when the gearbox is in a healthy state.

In order to test the normality assumption of {NðkÞ}, we apply the Jarque–Bera test [15,16], that is a goodness-of-fit
measure of departure from normality based on the sample kurtosis KJ and skewness SJ with sample size nJ. The test statistic
J is defined as

J¼
nJ

6
S2

J þ
ðKJ�3Þ2

4

" #
(15)

If the sample size nJ is large (e.g. nJ43, preferably nJ4100), J is chi-square distribution with two degrees of freedom.
Based on the Jarque–Bera test with significant level 0.01, each ARX residual corresponding to from data files 194 to 246 is
normal distribution except data file 210. Then we calculate the autocorrelation of all ARX model residual from data files
194 to 246, and Fig. 9 shows that the uncorrelated assumption about {NðkÞ} is reasonable.

For given model order parameters b, s, and r, the parameters of the ARX model are estimated using the least squares
algorithm [17]:

ĥm ¼
Xm

k ¼ 1

jðkÞjT ðkÞ

" #�1 Xm

k ¼ 1

jðkÞyðkÞ (16)

where m is the number of data values, ĥm is the estimated ARX model parameter vector

ĥ¼ d̂1 . . . d̂r ô0 . . . ôs

h iT
(17)
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and j is the input and output series vector used to build the ARX model,

jðkÞ ¼ �yðk�1Þ, . . ., �yðk�rÞ, xðk�bÞ, . . ., xðk�b�sÞ,
h iT

(18)

The model order parameters b, s, and r are determined using Bayesian information criterion (BIC) [18]

BICb,s,r ¼ lnðŝ2
NÞþd

lnðmÞ

m
(19)

where ŝ2
N is the maximum likelihood estimate of s2

N , and d¼ sþrþ1þ1 is the number of estimated parameters in the
model. BIC imposes a greater penalty for the number of estimated model parameters than does the Akaike information
criterion [19]:

AICb,s,r ¼ lnðŝ2
NÞþd

2

m
þconstant (20)

Once the ARX model is identified and all its parameters are estimated, the ARX model residuals can be calculated using
the following equation:

N̂ðkÞ ¼ 1�d̂rðBÞ
h i

yðkÞ-ôsðBÞB
bxðkÞ (21)

4.3. Numerical results

In this paper, the filtered TSA envelope and TSA data VTSA from files 194 to 246 (shown in Fig. 7) are used to fit an ARX
model. Comparing Fig. 7 with Fig. 3, we can find out that the filtered TSA envelope contains the components caused not
only by varying load but also by the gear shaft imbalance.

As mentioned above, least squares algorithm is applied to estimate the ARX model parameters. The order of the model
is identified by BIC approach that was introduced in Section 4.2. Fig. 8 shows that the minimum value of BIC for our ARX
model is obtained for b=0, s=3, and r=66.

The parameters of this ARX model yðkÞ ¼ d65ðBÞyðk�1Þþx3ðBÞxðkÞþNðkÞ were obtained as follows:

x3ðBÞ ¼ 1:082�1:674Bþ0:5991B2 (22)

d65 Bð Þ ¼ 1:598B�1:01B2
þ0:2965B3

þ0:1293B4
þ0:008993B5

�0:1169B6

�0:011B7
þ0:08425B8

�0:1159B9
þ0:06916B10

�0:01803B11
�0:1243B12

þ0:1699B13
�0:1695B14

þ0:04267B15
�0:03125B16

þ0:0126B17
�0:0005206B18

�0:136B19
þ0:1622B20

þ0:1128B21
�0:2211B22

þ0:06914B23
þ0:09999B24

�0:1493B25
þ0:1034B26

þ0:001125B27
�0:05813B28

�0:001733B29
þ0:01286B30

þ0:03604B31
þ0:1178B32

þ0:01246B33
�0:2306B34

þ0:2217B35
�0:1782B36

þ0:02661B37
�0:08044B38

þ0:123B39
�0:02903B40

�0:02264B41
þ0:05132B42
Fig. 7. TSA data for ARX model building: (a) filtered TSA envelopes used as an ARX model input and (b) TSA vibration data used as an ARX model output.



Fig. 8. ARX model order selection using BIC criterion.

Fig. 9. Autocorrelation function for ARX model residuals.
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�0:01523B43
þ0:04177B44

�0:02584B45
þ0:02091B46

þ0:02912B47
þ0:024B48

�0:03102B49
þ0:0716B50

�0:02914B51
þ0:02916B52

�0:119B53
þ0:06028B54

þ0:007412B55
�0:0362B56

þ0:02966B57
�0:00834B58

�0:01164B59
�0:03023B60

þ0:05247B61
�0:01407B62

þ0:04786B63
�0:0418B64

þ0:2373B65
�0:196B66 (23)

The residual checking described in Box et al. [14] is used to examine whether the ARX model is correct. Fig. 9 shows the
autocorrelations of the ARX model residuals {NðkÞ} using the data from files194 to 246. All autocorrelations are very close to zero
and do not show any marked correlation pattern. Hence, the residual checking indicates that the model is adequate and correct.

Now, we compute the ARX residuals for each data file from 194 to 338. Fig. 10 shows the ARX residuals for data files
254, 283, 259, 288, 261, and 290. The gear failure still cannot be easily detected using the ARX residuals, so the F-test is
introduced to analyze the ARX model residuals. The results of the F-test can tell us not only when the gear failure occurs,
but also where the gear failure is localized.
5. Hypothesis testing

The variance of residuals shows a strong relationship with the state of each gear tooth, so variance of the ARX model
residuals is investigated in this research. After the ARX model residuals are obtained, an F-test is applied to the variance of



Fig. 10. ARX residuals: (a) healthy state at 300% output torque, (b) faulty state at 300% output torque, (c) healthy state at 100% output torque, (d) faulty

state at 100% output torque, (e) healthy state at 50% output torque, and (f) faulty state at 50% output torque.
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the residuals. More details about F-test are given in Appendix B. The F-test result is then used as indicator to decide
whether the gear default occurred or not, which reduces the complexity of the decision making based on the gear motion
residuals.

First, the 70-tooth driven gear is divided into 10 sections so that each section contains 7 adjacent teeth corresponding to
361 out of the total of 3601 of one shaft rotation. The ARX model residuals are uncorrelated and independent when the
teeth are in the healthy state. Hence, the model residuals would be normally distributed with zero mean. In the healthy
state, it is reasonable to assume that all the gears are identical, so we denote the population variance of the ARX residuals
of each data file as s2, the sample variance of the ns residuals in each section as S2

s , and the sample variance of the nn

residuals of the other 63 teeth as S2
n. Then, F-statistic is utilized to test the equality of the population variance s2

s and the no
section variance s2

n. Hence, we test the hypothesis

H0:s2
s ¼ s2

n

H1:s2
s 4s2

n

using the following F-statistic

Fns ,nn ¼
S2

s

S2
n

, (24)

where ns ¼ ns�1 and nn ¼ nn�1 are degrees of freedom. Since we have an one sided test, the rejection of the null hypothesis
H0 means that the variance s2

s is greater than s2
n. The residuals of the selected section are more variable than the residuals

of other sections, which indicate a gear fault occurrence in this section. Fig. 11 shows that there is no rejection of the null
hypothesis H0 for gear teeth 1–35 and 57–70. In the section containing gear teeth 43–49, the H0 is rejected starting from
the data file 283, which indicates that the gear fault occurred. Also, for the sections of 36–42 and 50–56, the hypothesis H0

is rejected starting from the data files 335 and 338, respectively.

6. Conclusions

In this paper, a gearbox fault detection scheme has been proposed using vibration data collected under varying load
condition. A modified TSA algorithm has been introduced to compute a TSA signal for an ARX model building. The ARX
model has been fitted using the filtered TSA envelope as an external input and the TSA signal as the output. The parameters
of the ARX model have been estimated using the least squares algorithm, and the order of the ARX model has been



Fig. 11. F-test of ARX model residuals (1 indicates rejection of H0).
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determined using BIC criterion. Then, the F-test has been applied to the variances of the ARX model residuals for each data
file, and the corresponding p-value has been proposed as a quantitative indicator of fault advancement over a full lifetime
of a gearbox. The method presented in this paper has been compared with the method in Zhan and Makis [21]. The data
from the test-run #14 has been analyzed in both papers. Based on the results obtained, we can conclude that the method
presented in this paper can detect a gear fault occurrence earlier than their method. Also, our method is much faster and
hence, very suitable for on-line gearbox fault detection and damage localization. The results obtained in this paper are very
promising and more research should be done in this area.

It is well known that multidimensional vibration data contain more information about gear deterioration than one-
dimensional data. Also, in some situations both load and speed vary. Thus, a vector ARX model with possibly two
exogenous variables can be considered which should have the potential of further improving performance of the on-line
fault detection scheme developed in this paper.
Appendix A. ARX model

ARX model is a time-series model that relates the exogenous input xðkÞ and output yðkÞ that corrupted by noise NðkÞ.
If we assume that the exogenous input process xðkÞ is generated independently of the noise process NðkÞ with standard
deviation sN , we can write the ARX model as [14]

yðkÞ ¼ d1yðk�1Þþd2yðk�2Þþ � � � þdryðk�rÞ þo0xðk�bÞþo1xðk�b�1Þþ � � � þosxðk�b�sÞþNðkÞ (25)

where bZ0. Let B denote the backshift operator, which is defined by BxðkÞ ¼ xðk�1Þ; hence BbxðkÞ ¼ xðk�bÞ. The above
difference equation can be written as

yðkÞ ¼ d1ByðkÞþd2B2yðkÞþ � � � þdrBryðkÞþo0xðk�bÞþo1Bxðk�bÞþ � � � þosB
sxðk�bÞþNðkÞ

¼ ðd1Bþd2B2
þ � � � þdrB

r
ÞyðkÞþðo0þo1Bþ � � � þosB

s
ÞBbxðk�bÞþNðkÞ (26)
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If we define two operators by

xsðBÞ ¼o0þo1Bþ � � � þosB
s

drðBÞ ¼ d1Bþ � � � þdrB
r

The ARX model can be rewritten as

yðkÞ ¼ drðBÞyðkÞþxsðBÞB
bxðkÞþNðkÞ (27)

The model order r, s and b are identified based on different criteria, and the unknown parameters d1, d2, y, dr, o0, o1,
y, or, s2

N , which are estimated from the observation data.

Appendix B. F-test

The fundamentals of F-test are well presented, e.g. in Walpole et al. [20], and the following will provide only a brief
summary useful for the analysis in this paper. A continuous random variable z has a F-distribution, with degrees of
freedom v140 and v240 if its probability density function is given by

fn1 ,n2
ðzÞ ¼

C
1

2
ðn1þn2Þ

� 
n1=n2

� �n1=2
zðn1�2Þ=2

C
1

2
n1

� �
C

1

2
n2

� �
1þn1=n2

� �
zðn1þn2Þ=2

, z40,

0, elsewhere

8>>>>><
>>>>>:

(28)

where Cð�Þ is the Gamma Function defined by

CðaÞ ¼
Z 1

0
xa-1e-x dx for a40 (28a)

An F-distribution is a continuous probability distribution with enormous applications in testing whether the population
variances of two samples are equal. Suppose there are two normal populations with population variance s2

1 and s2
2, and

two samples X and Y are random selected from these two populations, respectively.
Sample X
 Sample Y
Samples size
 n1
 n2
Samples
 X¼ X1 ,X2 , . . . ,Xn1

Y¼ Y1 , Y2 , . . . ,Yn2
Samples mean

X ¼ 1=n1

Pn1

i ¼ 1

ðXiÞ
 Y ¼ 1=n2
Pn2

i ¼ 1

ðYiÞ
Samples variance
 S2
1 ¼

Pn1

i ¼ 1ðXi�XÞ=n1�1
 S2
2 ¼

Pn2

i ¼ 1ðYi�YÞ=n2�1
Population variance
 s2
1
 s2

2

Then, the random variable

Fn1 ,n2
¼

S2
1=s2

1

S2
2=s2

2

(29)

has a F-distribution with n1 ¼ n1�1 and n2 ¼ n2�1 degrees of freedom. To test the null hypothesis H0 that s2
1 ¼ s2

2

against the alternative hypothesis H1 that s2
14s2

2, the ratio f ¼ S2
1=S2

2 is a value of the F-distribution. Therefore, the critical
regions of significance level a corresponding to the alternative hypothesis H1 is f 4 fn1 ,n2

ðaÞ, that is

S2
1

S2
2

4 f n1�1ð Þ, n2�1ð ÞðaÞ (29a)

If the above equation is satisfied, we can say null hypothesis H0 is rejected at significance level a and conclude that s2
1 is

greater than s2
2 with 100Uð1�aÞ% confidence.
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